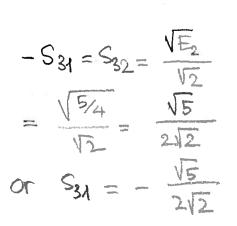
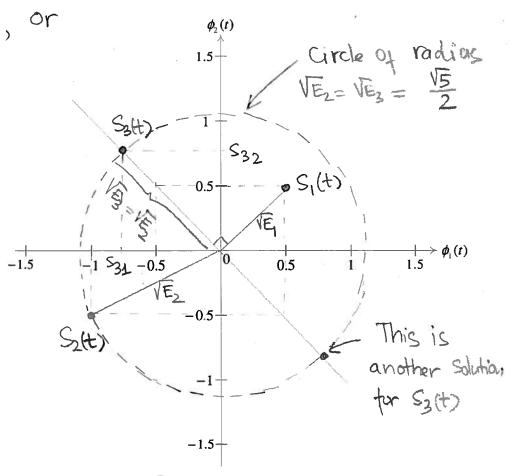
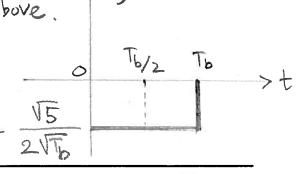

Consider a binary signal set $\{s_1(t), s_2(t)\}$ shown below. It is also known that the two orthonormal basis functions $\{\phi_1(t), \phi_2(t)\}$ shown on the figure can be used to represent the signal set exactly.




[2] (a) Compute the energies, E_1 and E_2 , of the two signals.

Then clearly show the locations of the two waveforms (i.e., the tips of the corresponding signal vectors) on the below signal space that is spanned by $\{\phi_1(t), \phi_2(t)\}$.



[2] (c) Compute the distance between $s_1(t)$ and $s_2(t)$, either from the signal waveforms or signal space diagram. Also determine whether $s_1(t)$ is orthogonal to $s_2(t)$. Explain your answer.

 $d_{12}^2 = 1^2 + 1.5^2 = 3.25$ \Rightarrow $d_{12} = \sqrt{325} = 1.80$ S₁(t) and S₂(t) are not orthogonal because $\int_0^1 S_1(t) S_2(t) dt \neq 0$

[2] (d) Find and plot the waveform of a signal, called $s_3(t)$, such that (i) $s_3(t)$ has the same energy as that of $s_2(t)$, and (ii) $s_3(t)$ is orthogonal to $s_1(t)$. Hint: The signal space diagram in Part (b) is useful. 1 S3(t)

See the solution on the tiqure above. S3(t) = - 15 (+) + 15 (2/5)

